completing the energy sustainability puzzle

ENERGY and WATER Global Issues and Challenges

Mike Hightower Sandia National Laboratories Albuquerque, New Mexico USA

Southwest U.S.Precipitation Patterns Based on Tree Ring Data

and the

Climate Change will Impact Precipitation Evapotranspiration, and Runoff

Nat. Geo. April 2009 from IPCC

Mid-latitude population belt will be strongly affected

Assessment of Regional Water Stress in North America

Expected Water Shortages by State

GAO 2003

Water stress is increasing nationally

Water for Energy

Water Withdrawal (1,290 Mm³/d) 2005

Water Consumption for Energy Extraction, Mining, and Processing (2006 Report to

Water Use and Consumption of Electric Power Generation Alternatives

RGY and WATER

	Cooling Process	Water Use Intensity (l/MWh _e)			
Plant-type		Steam Condensing		Other Uses	
		Withdrawal	Consumption	Consumption	
Fossil/ biomass steam turbine	Open-loop	80,000-200,000	~800-1200	~120	
	Closed-loop	1200–2400	1200–2000		
Nuclear steam turbine	Open-loop	100,000-240,000	~1600	~120	
	Closed-loop	2000–4400	1600–2900		
Natural Gas Combined- Cycle	Open-loop	30,000-80,000	400	40	
	Closed-loop	900	700		
Integrated Gasification Combined-Cycle	Closed-loop	800	700	600	
Carbon sequestration for fossil energy generation	~70-90% increase in water withdrawal and consumption				
Geothermal Steam	Closed-loop	8000	2000-5500	200	
Concentrating Solar	Closed-loop	3000	2900	40	
Wind and Solar Photovoltaic	N/A	0	0	10	

Water Consumption of Transportation Fuel Alternatives

Fuel Type and Process	Relationship to Water Quantity	Relationship to Water Quality	Water Consumption	
			Water consumed per-unit-energy [gal/MMBTU] [†]	Average gal water consumed per gal fuel
Conventional Oil & Gas - Oil Refining	Water needed to extract and refine; Water produced from extraction	Produced water generated from extraction; Wastewater generated from processing;	7 – 20	~ 1.5
- NG extraction/Processing			2 – 3	~ 1.5
Biofuels - Grain Ethanol Processing	Water needed for growing feedstock and for fuel processing;	Wastewater generated from processing; Agricultural irrigation runoff and infiltration contaminated with fertilizer, herbicide, and pesticide compounds	12 - 160	~ 4
- Corn Irrigation for EtOH			2500 - 31600	~ 980*
- Biodiesel Processing			4 – 5	~ 1
- Soy Irrigation for Biodiesel			13800 - 60000	~ 6500*
- Lignocellulosic Ethanol and other synthesized Biomass to Liquid (BTL) fuels	Water for processing; Energy crop impacts on hydrologic flows	Wastewater generated; Water quality benefits of perennial energy crops	24 – 150 ^{‡§} (ethanol) 14 – 90 ^{‡§} (diesel)	~ 2 - 6 [‡] § ~ 2 - 6 [‡] §
Oil Shale - In situ retort	Water needed to Extract / Refine	Wastewater generated; In-situ impact uncertain; Surface leachate runoff	1 – 9 ‡	~2‡
- Ex situ retort			15 - 40 ‡	~ 3‡
Oil Sands	Water needed to Extract / Refine	Wastewater generated; Leachate runoff	20 - 50	~ 4 - 6
Synthetic Fuels - Coal to Liquid (CTL)	Water needed for synthesis and/or steam reforming of natural gas (NG)	Wastewater generated from coal mining and CTL processing	35 - 70	~ 4.5- 9.0
- Hydrogen RE Electrolysis			20 – 24 ‡	~ 3 ‡
- Hydrogen (NG Reforming)	natural gas (NO)		40 – 50 ‡	~7‡
+ Danasa af watan waa nan wait.	a manual la nua ha ha a a d'a mad	séa éaltan fuan élas Enanni Wa	ton Donosta Commons /	DE 00071

[†] Ranges of water use per unit energy largely based on data taken from the Energy-Water Report to Congress (DOE, 2007)
^{*} Conservative estimates of water use intensity for irrigated feedstock production based on per-acre crop water demand and fuel yield

[‡] Estimates based on unvalidated projections for commercial processing: § Assuming rain-fed biomass feedstock production

Coal Power Plants with Potential Water Supply and Demand Concerns

DOE Energy Water Program Plan

Technology RDD&D

- Thermoelectric Cooling Improvements
- Waste Heat Recovery in Energy Systems
- Process Water Use Efficiency and Quality
- Alternatives to Fresh Water Use in Energy Production Using Advanced Materials and Processes
- Traditional and Non-traditional Hydropower Improvements
- Desalination Improvements
- Net-Zero Municipal Wastewater Treatment
- Sensors
- Deployment

Analysis and Modeling

- Integrated Analytical Platforms
- Decision Support Tools
- Policy Framework
- Stakeholder Engagement
- **Electronic Diplomacy**

The Water-Energy Nexus:

Challenges and Opportunities

June 2014

